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ABSTRACT

We consider the inviscid stability of the Batchelor (1964) vortex in a compressible flow.

Tei problem is tackled numerically and also asymptotically, in the limit of large (aznimuthal

and streamwise) wavenuimbers, together with large Mach numbers. The nature of the solution

passes through different regimes as the Mach number increases, relative to the wavenum-

bers. At very high wavenumnbers and Mach numbers, the mode which is present in the

incompressible case ceases to be unstal)le, whilst a new "centre mode" forms, whose stabil-

ity characteristics are determined primarily by conditions close to the vortex axis. We find

that generally the flow becomes less unstable as the Mach number increases, and that the

regime of instability appears generally confined to disturbances in a direction counter to the

direction of the rotation of the swirl of the vortex.

Thrioughout the paper comparison is made between our numerical results and results

olbtained from the various asymptotic theories.

'This research was supported by the National Aeronautics and Space Administration tinder NASA ('on-

tract Nos. NASI-18605 and NASI-19480 while the second author was in residence at the Institute for
Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton,
VA 23681.



1. Introduction

III Ire(elit vears t here hias 1)eeli a good (deal of interest III t lie ýt aI )litv of in nlcorssil )leb

swirlingt vortex type flows. Two imiport ant al)Ilicat ioll', to t his area of research are thle

I reakdlowil of trailing line vortices 1behiind aircraft and to tornado(es: t his class of flow mlay

also 1bea1Plcl)e to flows Inside t urbi nes amiol compIressors. to which thme present work

w,,ouild 1be particularly relevant.

Thet eail'iest wvorks hii t he aeaof the st ab ility of swix-rl'iim vortex flows, include those

of Lessen kc Paillet (1974) and Lessen. Singh k Paillet (1974). Inl the former paper the

st a1 i lit v of thle Bat chelor (1064 ) vortex was consid ered. at finite Reyn~oldls hum1 )lers Ill) to

1.50. Ill the secondo paper, th lie j .,iivsc st ability of tins; vortex was st idiedl ando revealled all

inicrease inl growthl rate at inraigylarge wVaveiumn1)ers (with dlisturiibances being mlost

(alagero~us comiiter to thle dlirect ion of the swirl).

Duck &- Foster ( 1980) shlowcl that for a givenl waIvemmIhellllr a mullltiplicity of miodies

exists. Leibovicli &, Ste-wartson (1983) and Diek (1986) considered the limlit of large

waVel VIiluhiler for this Iprob~l(iii, ando showed that a finlite (Imnaxiniun ii) growth rate was at -

ajined. The -aforiementioned st udies, suiggesteo ;lla upper and lower neuitral vahie of axial

Wwaveiulllier. The uipper neuntral point for large azimuithal wavenrtinnler was treatedl by

Stewartson &- Capell (1983). who showed that the "ring hiiole- structure of the uliistalble

imiodes pe(rsisted limear the uipper neutral points. Stewartsonl k Brown ( 1985 ) couisiolereol

theeper~)~ neutral p)oints for order one( azimuithal wvavemnumhers, and~ founid that inl this

case thle miodles were of centre mode typ~e, similar to those found inl a relateol study l oil

s-wrl.,ingl P( iseuille flow ( Stewart son &, Brown 1 984). Thec b)ehaviouir of the iiiis-table in( ides.

close to the lower nieutral point, at large azimunthal wavenumliner, was limivstigatel 1by Stew-

artsomi &- Leibovicli ( 1987 ), and determined that inI this c-ase, the inst ability (list urlianlces

wem e centred near the axis of thec vortex.

XMore recently, viscous results have b)(een p~resenhted at finite (1but large) R3eyniolds

mnumibers by Khorraiini ct al. (1989) and Khiorraiii (1991). Inl this latter paper, it was

.shown that additional umistal de modes exist. inl which Viscosity plays a dest abl l"ing role.

Thiese mnodes were analysed by Duck &, IKiorraini (1991). The linviscid analysis is also



applicable to other vortex profiles, including that of Long (1961), as studied by Foster k

Duck (1982) and Foster & Smith (1989).

Little attention has been paid to the stability of complressible vortex flows of this

type. On the other hand the area. of compressible jet flow has been investigated for some

years now, the work of Michalke (1971, 1984) being relevant here, although restricted

to non-swirling flows. Compressible swirling jet flows have also received some attention,

the work of Coleman (1989) should be mentioned, who studied the superlosition of a

Rankine vortex on a top--hat jet velocity field. More recently, Khorrami (1991) studied

a compressible swirling axisynlinetric jet, by assuming the incompressil)he flow of G'(rtler

(1954) and Loitsyanskii (1953) was apl)plicable in the compressible regime.

III this paper, we take cylindrical polar coordinates, (1i7, 0, lar), with the x axis lying

along the axis of the vortex (which is taken to he axisynimetric), and 1 is some streamn-

wise scale. We also take the flow far from the vortex centre to be directed along the

x direction. The velocity field is written as U*u = *(u, v, w), the fluid density is p*p,

temperature T'T, first and second coefficients of viscosity jtrit, 1**A respectiv-ly, and

pressure p*U. 2p. Here superscript asterisk and subscript oc denote dimensional and

freestream variables, respectively, and also Ut is a velocity scale, defined below in (2.6),

whilst U* is the freestream velocity. We define the flow Reynolds number

Rc - ,(1.1)

and we have a flow Mach number given by

. -, ,-, (1.2)
(yR*T* )f

where -y is the ratio of specific heats and R* the gas constant. We also define the Prandtl

imn11,ber to be

Ir -- (1.3)

where K* is the therinal conductivity of the fluid.
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The non1- dimiensional equat ions of (cont inuity. nionientuinn and~ ene'rgy miay thlen b e

wvrit t (11

-p + V (plU) 20. (1.4)

Du 1I
p) =2 -J- -V A [ii(V A ufl + -V.[K\ + 21i)V.u]. 1.

DtA

Dl, Dp 1 )D t 22Dt + + (T R( T). l,

whelire /I is t he ulitllahlpy of the fluid. and (1 is t he vis-c )lls rhiss!ipa tiI i ) We ;lsoa sin(a

perfect gas. iii which case we have

22pT l1i7)
,12

III tlie following sections" we consider first the b~asic flow ( section 2). which is, Shown -o

b~e a propcrW solution of t lic ab~ove ('(Ilations of conit iiiiity. l~lio1l(lcltll 1111 c1l( ii r"'.2. III

sect ion 3 We ('oisioler the iviscidl lineair st aldijty ('(ilat ions,. Iii sectijon 4 wte presen'lt aI

in unber of nuneialA results, guided Q) willh. in sec j(ii 3 W( develop ;syinpt)t01ir resiult."

for large wavcellluulbers: thlrolughlout this, s(crt io we ('uuljilasis(' a conmipa ri'so bc1 t weet oul.0

iniuniercal andl usvnl)tkoic results. III sectjolt 6 a iume cAss of immode which is foip 111 o

dlevelop) at sufihejultly large Macli iniiuilmt' is Nnollshl'Id. In secti( 7u we j Ueseuit a j-iilhc

of conclusionls arising from tllis wvork.
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2. The basic flow

Let us consider the solution corresponding to Batt(hl(-hors (1964) similarity solution for a

swirling wake flo)w, ,equivalent to a far downstre-am limit (r >> 1) of the governing e(jluatiO(ns.

WC, thus sup))o(se that the solution comprises of a uniform (frestreaiu ) flow -plu.s a relatively

sm.'l all pe(rt II-a tloll, i.C'.

+ (. "2.1a)

, . •(2.1c)
2' +' '2 .1 ( 1

t, 2
..3

T I + (2.1c)

S= 1 + P. (2.1f)

The solution develops in imuch the sam'e way as the incompressiOhe case of Batchelor (1964)

and it is found to leading order that

1 CU(* log(x.R Q) C'" LU* '2( -'1
1Q(i;) +0, f Qt2(1) - (2.2)

,(0 2.3)

C'( R( 2
- -(2.4)

2(.ril) ).C

"we11cre

R(2.5)

"C*1 L=2 2.6)

l_ • S~r, . R••. ()•.r r •) +S~ri'ZJ2Rt
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and1

Q1(i0) c" (2.7a)

Q2,(1) -'"[log q+ ci(ij) - 0.867] + 2(i(i,). (2.71)

Co and L are constants and Rc, is the freestreain Reynolds number defined by

R _ -- P* (2.S)

Ve also find that

_ ciu J2 [(1 -(-")" (
SxZ8,U,2*R+ ((••) 2i(2?/),

whilst the te'mlperature perturbation is given by

_LC A 1 (ý _ 1 ), 2 ,2 1 1
4~ ( 1 + B 1. C() Li- - Wi'

_8(7 -- + 16c7

+ - 4 C'f(1/2) - 84 ( (rf(i/2

4 22(ý

(-2((-2 ii + 2- c i(/4)

(2 .2

++-2 ± i(2,1 /2)) +, (2.10)

where A and B are constants, 2 - 2i , ri(z) and crf(z) are the exponential integral a I

the error function, respectively. defined in the normal manner. and AI. is the freestrenmi

Mach number defined lby

=U . (2.11)
(IR*T* ) u;

Note that we expect AI >> M1. Wc also find it useful for the relmain(her of the paper to

define the lengthscale

r =(2.12)

where r, (4.r/R(,,)2 is the characteristic radial h'ngthscale.

In the following section we consider the inviscid stal)ility equations.



3. The stability equations

\V' take the general basi c state tobe it r r), v = 0. 1 = IV( r'). T = To(r ).p 1, r'). =

/),((r) indl conisid(er small aml)lit ide perturbatiolns to this flow: we write

U) = U(r) + ýF(r)E + 0( 2)( . (3.1a

.= 22iG( r)E + 0)(#2 ). (3.1b)

i, 11 l(r') + IH(,-)E + 0()2 V. (3.1c"

/) =2 ,( r) + ý_-lI 2 P( r)E + O(b2 ). (3.1d)

T T(,r) -4- r(r)E + () ( ). (3.1c)

/,)2 ij)(') + ýF(r)E + ()(62), (3.1f)

wheire. < « 1. and

E = exp[ i( ,( .r/,., + 1?0 - o, ct/,., )]. (3.1g)

The ,overrning stability e'quati(ons. neglcting thle effects of viscosity are then

d+mo, F + G' + G + ) + G,= 0. (3.2)

UlZ ± fULG = -oP. (3.3)

A).,yG +A,- - + F11 2  P' (3.4)

I)<lH + po IV' + -G (3.5)

pt*(T A-pai,('7](r) 0(- )(".MfP+GI) 0. (3.6)

"rAI P --- F T, + ,. (3.7)

wlhcr' we have writte.n

r I'
.- , ( " - ' (3.S)
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and priies de•lote differelntiation with respect to r. Note that (3.1). (3.2) (3.7) all im-

plicitly asslitti, that the axial scale for the perturbation quantities is cozsidral h" shirter

than any developmental lengthscahe for the b asic flow. as is tle case if r, .< 1.

Equations (3.2) (3.7) may be combined to yield the followiig, two, first order ,qua-

tions

(G n(rW)' -1-r(1'~ I{ 1 ,, 1+- -(( ) 2 ) .\J
-G +_Ir_2p_]G 1 [1217. ", 2 - P. (3.9)

22 , , - I. -

1(PIT- 2 )r 2 2 1 ____ G

- I TV P) P3.10)

Thcse e'quations are somewhat similar to those consi(lered Ivy Michialke 1 0 -,. the

context of jet flows, if the swirl velocity is 'glected.

Let iis now considler the specific blasic flow of tlh trailing line vortexx, as disclissed in

the pirevious section. Equations (2.1), (2.3) (2.5) may be s1ub)stituted into) (3.9). (3.10).

and then if we assume ] I < I! log .r, and using the fact that a simple transformation and

inversion of the axial velocity only affects the frequency of the stability analysis, and does

not change the amplification factor ci (where c= cr + ic') and noting that p. a and T are

a, order of O( log.r) smaller than ih, i and t,. then (3.9). (3.10) reducee to

dG = J 2G + r2 1 +l P . (3.11)
dr I' Ir Id 7' 1 •

(IP 11-(T 21.2 )'1 ,. -2 l ___7G -r"J (3.12)

The boundary conditions to be applied are then

P(0) = 0. , $ 0; P'(0), ,, =0.

G(() = 0, ,, €- 1; G'(0), IHi = 1.

anld G(r), P(r) boumnded as r --* cc, (3.13)
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and the basic flow may be taken to be
- 2

u = -, (3.14)

q( 1  - r) (3.15)
I'

where (I is an order one (swirl) parameter, and we have effectively scaled velocities with

respect to U*.

Equations (3.11), (3.12) may be combined to eliminate G. yielding the following

sc('ond order equation for P.

2 T- 14 2A1+ P 11 21ý . 1

Irrr{ ' - W' + [ -( O [ - r)]

[a2 U, + ipr'U' 2n VV- It' 2 Alw2 ]

7,±1 72 Y" j

-[2nTV -11, 1'2A2 ~ T  2 )]' [ ,,,2,,2 )11

1 [a 72 L,'I± i(rl-V)' 2 [n I'V Tj- 2 11.12 I2

( 1 ,2 1 ,2 + 1 2 [ -( 2 ,2 ' } 0 . ( 3 .1 6 )

Setting Al 0 clearly reduces (3.11), (3.12) and (3.16) to the incompressible l)roblem, as

considercd b)y Lessen et al. (1974), Duck & Foster (1980), Leibovich &- Stewartson (1983)

and Duck (1986). It is also possible to be rather more precise regarding the behaviour of

the sohition as r --4 o•; this takes the form

dG 21

d ± a0(1 - c'M )PG 0, (3.17)
,dP

dr ± +(1 - c AMl) P =0, (3.1S)

wh('re positive signs are taken for ,{ (1 - c 2111)½ } > 0, and vice versa, to ensure bound-

('dliess as r --* 0C.
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The "order oue" proLl-I i-n requires a fully numerical solution, which we consider iII thhe

following section, prior to considering various asymptotic limits of this system of equations.

which permit a certain amount of analytical progress.
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4. Numerical results

The sys~tcii was t reatediliiiiiierically us"ing four dlifferenut techniqueji(s. The first waV; b ased()ito

lthe ili(t ho ( 1 f Duck k- Foster ( 1980). ini Which the syst III wa s al)1)roxiiiiatt(1 byv s'condt

()rdcr central dith 'renccs. with coindlit ions (3.17) and ( 3.1) imp ~sed at a finite radial valicL

1. . t aken si ithcientlv large no t to sub1 stanitially affect the resiult. The det erminitanlt of

(,in was t heni forced to yeno by) adIjustinug the compIlel(x xvavespeed c (1using, Necwtonl

The 5('c(i iinietluod was b ased oti a foiurth ii rder Rilnige Kiut ta schemne. coii( it ions"

(3.17) and ( 3.1S) were approximiated b y imuposinig 1boundary t'oidcitioiii at a finite radial

valic I. = Ia,~ whiere' this vahl "- as a gain taken sufficiently large to ho l )staital

affect thle tiilunerica I results. The conulpit ations Wr performled 1by shuo( t ilng thle 'soliutioli

toward s 7. 0 an11( were not iiece~ssa rih c~ iifiuiecl to t he real r axis. The va lue if c w~r,

a djiistold (;agai Iiiising New-tonl it era tion ) to ensure thle c~orrect 1bihiaviouir o)f thle so(hiltioii

asV--- 0.

The t hird mnetho 110( ud was 1based oin the first. 1 )nt w'as a gjb1 al finlite dlifferenice

hii('t ht )L. Usinig the afo remlentitonied finlite dlifferenice schemle. thele by(('iiii twi) a titi-

tiouial quanitities ( c. P P at ('acli gridl point, it is poss,-ihlefto write the rsitn

"Cschtitic ill thle fortii

(A --(B)x 0. (411

where,

Xý[{c;}. {pl, f6'). {3}]' (4.2)

This scheiene has thle ol vioius advanitage of genlera t jg 4.V oigenvalu, s ( where NV is the mini-

1T (i f gild 1oint s ). shinvilt auiouslv. Tin' principle disad(vanitages are ( i) it is niot omssibl e to

int' (13.17) (w or S (3 8IWcavue of thle uion hlnerity (Jf c. and cohise(ll'iet lv Dirichihet boiiuidarv

t'otitlitioiis were aplhied inistead at the ouiterz (Atge' 4i the roiniijitatioinl thoiiiaiui: and (Wi)

the( ,-cficnlic' l'e(jiir(' rajoillyhviuncrtsiilg t'oinlpitatknhal resources (both in storage and time)
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The fourthi sclienici Imiplemien~ted wa~s aI (lie 1 Wslc hi'\'spect ral colloc)(at aion scm ici1( . k1as (

onI tlhat of I'hiorraimi Ash k- Malik ( 1989)I. Tilts wvas aI tlolkal iiiethiod. which t)cilcrahhlv

fealt iir nimild , inmany spectral. schemes,ý. Thei firs,,t ( finlite (l1iforo'Ii'(') sýcllcmci wasick an~d

111>.hlit becaulse of Its, --local"' nature. mlodle jii1iipino.~ wals often o'XIericiico'ol. Ollie to the(

freojli('ilt close- promiiiiity o f Imeiigilou1im)II I1i(" )(l-s a (fiscuissc(Io later Ini the pipaie. The ecciiil

Piiii_,o himttal ) schemei waIs also) qu1ite fast. ;111(1 lIaol( thec aodvaiitl.'c (I f beijjoý aide to co)ii 1 )Ipt('

neutra atio '11l nlearl iio'ultra;l iiiooles ( aIIol oveii sýtblel imodes' ) hr coiitoliir jiirleiitatioii. hunt

Iýil 11i ho'(altse 't imvlvo ocal searchlii Was loieto ilio)d('liiIii! The third slwchii.

Ia IIICl Iv th ho' l( hal hunltc ('diflereiice scijeino '. whichl pro weol to ( 1 very ro)i)lt.pro nlmiced- few.

;Iif mui ] I, ii)1(i.'.c 11(11 physical ) imodles'. ;1iio I c(icr at ('( iiiaii ('-,I ivalIIes Siiiiiilt aiio' n isi

loecauiso of its, glIolial hatl'ire1. ('ons'eqimextlv 0111 resul~ts were genieraIlly coilihlitc l usingo the(

first s'ccnlei ( if o~>a limited tinunberwi of iIolo's-, we-re required-c orI the third schIe~ici if it

X\ ('a'-' It 'ojhi l to( coImihlite iiiaiiv 111001(5.

Wc nw prescilt a few nijino'jrical1 nresult s to 'jye smoile indll.ict(ion o)f the etlects- o)f

vxaruatloliI of certainI o)f tIle iiito(rtai,,t pIharalihters. H('ro'. midl ilidlel iii aill our cealcuilItI0iomis

WC Co'lo-w 1.4, 0 (.8. PurtirIo'. we ovenerilly found that 5,01  .,wsisfficI(iit with

__, (1 .03.

Figuriies 1 a1. 1). v' show thle varia t i(on of g-owthi 1Iat e ((Io*,) with 1 i for thle cas('c -11 3.

with ii -1. -2. -3 resp~ectivelyv. Thecse results ( and all1 those lpre'OIlted l i thlis paper (Ire

a ccu na*;t (' to) wit hiii t he( grap)hical a ecuniracy o f tille figluros. B~eca use of' th l , rc at miultiphicitv

anld close prIoximiity of all1 these miiooho's. wVe show the coIni])uteol vahum('s, of (Iv, aIt ealch valuit'~

of o. Fromi the ')ltso't it shiouilohe Ito' tatol thait all oi! resuldts reIlate to Ilio;ative valuescý of'

11 : lin go'uiWo'ra. wN' believe t hat iiistab I*itis are aIlmiist exclusi vely coinifimn'h to thi re'. joIII of

pmtrmilo't(r spac'o. with p('rhimps aI few nunor1m exceptions. NVC certainly expect t lIeI hargc'st

%.rowthl ra;tes to In' coliitiied to the mI('gIatiV( \x'ahuies o)f 11 0(1. thi is ah'- the case, whenl t he tlow\\

WCsc IiollesIhllo'h).lvm- ~ I.:() I lcclril.Ivl rlc 1ý

iii1 r' e. i) all a1i);I(l-lit c'ut o)fi v;1hun' oIf (Iahn)o' which nol iimistabo' Iliooho' co'xmt (Ili;I



t1n(h•incy for the inaxiiiiunu growth rate to ble attainewd It an i re1asilg value of o as, -1

Is ,In'creased: (iv) many modes of instability.

In figures 2 a1. 1). c. d. c. growth rates for the case M = 5 with i = -1. -2. -3. -4. -5

resl'ecttiv'ly are prc'sci'te•d. The trends (i) (iv') descrilbd (1 ove,, are again ol)'served. to-

.rether with the result that for corresp~onding i g and (,. the growth rates of -11 = 5 are

sull),stant atllv reduced coi•pared to -11 = 3. Further the upper hiuit of o of the instalilitv

ai lwars to ble (lite ind(ll)einident of A.1, and section 6 c(onfirnis this oh serva tion. Note that

in fipures 1 and 2. the lower range of (I has been delilb)erately truncate(d. In this limit, o01

nIuneriCal results b iecamne extremiely selnsitive to grid size. and commtation reqjlireillllltts

I'ecanmn prohibitiveC.

These results suggest a nmlmber of interesting features, and in the following sections

we mnoinlt a systelmatic ,tli(lv for increasing ••. when (i-i) >> 1.
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5. Asymptotic results, (-n)»> 1

5.1 M=O(1)

It turns out that for this order of Maclh number, to the orders to which we ('onicern ourselvs.

the solution (in particular for the coml)lex wavesl)eed) remains unchange(d fromi the -11 >> I

solution of the incompressible case, as considered by Leibovich & Stewartson (19S3) and

Duck (1986). However, since this solution forms a basis for the following subs'ectiu)ns. we

outline, briefly, the form of the structure in this case; full details can be found in the

aforementioned )alpers. We have that

o = 71-, n = 0(1), (5.1)

and the comp)lex wavespeed develops as

C1 C?2c-co + + ' + ... (5.2)

Then generally

"i- o s + ýý I + 2 + ... (5 .3 )
p~~t 1np 2 1

where

'P = a(U(r) - co) + W(r) (5.4)r

However the solution is found to be conicent rated about points 7-= r0 (critical points)

where = ro(r =o) 0 and so

W4(r0) )
a(U(r0) - co) + -0. (5.5)

However, it turns out that r0 must in fact also be a turning point, and so

)(r0) 0 0, (5.6)

)+ (, (3.7)
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wl ,r(' ý1bsl )ir 1)t z,(,e herv and hereaftcr dhenotes t'valliation at r = r0 ). Equation (5.70

then serves to dhetermiine rn,. Mid llIn ce C0 may b'e dleterineind from (5.5). The key hngii,-

s,'ale insiahe tle critical laver is ,iven by

t = (,- r,) ,I . (&5.S)

;,iuil then ,il this scalc

si(l(1I ) {- + (,, )f•2  + () -' ). (5.9)

-1 -- •I- (5.10)

,( . (5.11)

Fo'r ,ll)is-tc'll'.v it was shown Iv Leiljovich & Stewartson (19S3) and Duck 19S6) that

. 1V:,.- )~,,_ [(,.lU-), + ,. i•,',]2 3.2,1-2'12 (1 + (r1)r.2(. ]-2

C 2 ~0 0 (.2
:'1 2 2 2 )1- (1

i'",rrtlh.r. ri the ? R N1) ISCale the e'igc'nfimn'ct (0.s scale ,as

p P + .(3.13a)

G; =ruG + .... (5.13b)

;1nd th,1n P(-ftR) is (descrile('d by

--rit l- ,L {9[2 *"i ;(r°)R• ]sig'( '')( 12'2,' '{+ " ~ •• '

()I"

p _ {, 2 } =0 (3.13)

S4 2(A,\ ) -
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where we have written 2 2 A R, with

2 ~ ~~~ (1 ± 1-0)~ 1 5.6
-sgnn) 2 -Ao 0,;(ro)

AO0 = ---sign(ii) an d l A .( . 6

Equation (5.15) has a sohltion which may be written in terins of XWeber lparalmolic cylindter

functions, D,,, ( ), and so if we demand the solution decays as o- 'c. then to must be

an integer. yielding the following result for C2:

1

c.2 - (A + 2m), m = 0.1.2.... (5.17)

Figure 3 shows the variation of growth rates for .1l = 3. for 11 -1 (the least mistaable

mode shown) tip to 71 = -10 (the iiiost unstable ilnode shown) as computed for the full

system: in all cases the most unstable mode for each value of it is shown. Usinhg the

asVilyptotic results above, we show the corresponding results in figure 4 (in particular we

set i= 0 in (5.17)). The comparison between figures 3 and 4 reveals goodi agreement in

the growth rates at larger values of - i. although at smaller values of -i,. co-iarison is

less good than the comparison of incompressible numerical and asymptotic results. This

less satisfactory agreement may be attributed directly to the effects of compressibility. blit

for it I sufficiently large, the asymptotic results presented in this s11) section are ultimately

al)proached.

In the following s51b- section we 1)egin to incorporate compressil)ility into our afsyip-

totic description.

5.2 M=O(I-In)

The key equation (5.14) was ob)tained by taking the O(jInI ) terms in equation (3.16).

If Inj >> 1, and we now permlit Al to grow in magnitude. additional ternis will ultimately

enter (5.14) when

m = :1-M, l= 0(1), (5.1S)

15



when the coefficient of P will include the effects of coml)ressilbility. The modlifiel equatiOni

is then

P RR - sig+(u) (I)? 1 (-0)

+ 22 -r2

+ ~ ~ - CO)+r~' ] (I'Y ) oP . (3.19)+(,. ) 0 +'

All other quantities (specifically co and c1 ) remai unchanged from those evalllatcl previ-

ously. This equation may be transformed to the sane form as (5.15). viz

4- { 1 =K ± ) } 0 , ( 3.20 )
2(A, )I

where AO and A I are given by (5.16), whilst

A• = Sign() t? (w-- (3.21)

Consequently, using our previous arguments

C, (A- 0 ,+ m = 0, 1,2,.... (5.22))

Figure 5 shows a comparison of "exact" growth rates (obtained using the numerical ap-

proach of section 4), shown as a broken line, with the asymptotic results of this stl)ssection:

here. the chosen values of ii are -5, -10 and -15 and we set M = In 4 i.e. TI : 1 in each

case. The agreement is satisfactory, and improves as n. increases. Figure 6 shows the

corresp~onding comparison for C,; in this case the agreement is excellent.

5.3 M=O(InI•)

As .11 (and hence All) increase in magnitude, the "A2 component" of c.2 increases (as

Al2 ) and l (wCoCwliv sufficiently larger than "X I coilnpolient". Simultancoushy. the coefficient

of P, in (3.16) will grow, and further terms ini the coefficient of P will become significant.

The next important regime, for M is when

M -- iII, TI -- o(1). (5.23)

16



Although the key rniial scale remains R 0(1) (see (5.8)). the series develpmlent of c

and ,ý( R) is now altered, and is instead

V' 1 C'2 C '

c= c0 + - + + " + (5.24)

7 lIF, 1 71 12

and therefore.

F;,=i 1 Fl" + 2 +""

1

1 1 9

+O{-c•sigl( ) + "(r, )R} +. (5.25)

Conside(ring ()(1 I I, ) quantities in (3.16) requires that the sun of these terms is zero. aiid

so this leads to,

.1 2 1, rV)2 ±1r IT`') +a7.
C. =-sign(ll) 2a0 + " (5.26)

The equation for P(R) is again obtained by taking the O(7)1 I terms in (3.16). nailnel

.11 2 1,12  (1L 2 r ?1+ . (5.27)

IUsing the standard transformation

P(R) = P*(R)cxl) 1-2j, (3.28)

thenL

C3 )R 2  1 + a21. 2

P - {2 sig(i)(. - 2 / ( . ),)

.1 (5.29

17



~[1,2 + (2(+Aý; 0. (5.30)

Siiie 3.3()) is again a foini of \Xehers eqiiatio. tliei

(A,) ( 1+ 2m) ~ +-: 0. 1. 2.... 5.32)

Figujr'e 7 shows a comparison of asympiJtotic resuIlts ( solid hues ") with Iiiiiuuerical resuIlts

lhrokeii line), for o =-5. -10. -15 with -l 1 (i.e. -A1l 1) . AgŽain1 the, comparison

I conics 1115 arkcdly 1 let ( as ou inreases5'. The correspo( liuldig list libilit i( oi f er' aga~iii

"t!ýood. aiIl sliowii ill figiire 8.

hxi thlis ease it is quite cler from the, Imevious siuhsct ion that wh~en l -1( ii 0 11). thlei the

Cl teruui ( see (5.26)). which groxvs as Al 2 wil 1oow )e wui c puarallle in inuagnit iid to tlie, teril

iii(llvoliuLZ! c1 )Which is iluIde~wndeunt of AlI): ill a(lhit ionl to t his. sinice (-:j gro w., as,.1 as.,

lincr( ases. tilien t his terml will als'o 1become couiparal le to t he c I terni whdieu *l (V ( ~

Iii this ease, it is straightforwvard to show that ft 0( 1) reuuaius t li al)1)wRolri radlial

"'Caile. whilst thle waveslpeel exp~ands as followvs

+ + (3.34)

If m'- write

Al l~~. A! 0(1.(3.35)

18



tlieii tilt, equaltionl for P(R I,, i

_______o_ o W (Ii;

Wo-r I I'()

+ 2

+ _ +

A,;ilii uising~ a ,t ~tnd(btrd trnilsforilat~io ()f tilt folrml

P(J?) =P(R)cxp 12 (T

I2n

±sgi(n n ~+ ;2 ~~3II~

+[(2 ((~~ ((I 2r) i'W 0
2r i

If011' ~lnIt 01 egrlil tli lllor ~l'eo tle ? ( ( )se c st ) 'oiis 'lt

a tIioih 5ctle oiiiei 51jlw grdtgI? () Ii)) in ii ~hixi 1v+lil

+ slg11(71 0 '(



/Ii a i)( ve, mtust be) zero. ( This is, also '-oiisistetit With the( jp'i-cimi>sla '11aler oI'(l( m of M achi

Ill )C1he( )l~l.'Idedl pre'(vious5ly). This lva(lS to

_I__2_1_0 (111)10 ± u~j( "± /'_1 2 2j 1 2 t2

-
2 o,.j( 1 (I~r~ V~2or i- 4- o*IP

1 1 220.39_

\vhrr(' (el(Iotes the i11coiii1 )1e55ible l( a1lii of cj. nviie hy 5.i.I2). Tlt e(p1 u~tjion thait

{2( ~ ~ ~ ~ ~ ~ ~ _J 1i_1(i ) 2 p 11 O~

+.gii( igil(I(IV) ~ + ( 'L -(0

O r sVinl )( lica liv

[\~j 11?2 + A\Oc 2]P* 0 (5.41)

N1d11( 1isig 1)ieviols argumen~its. we~ imist have

(A, ) 2(1 + 2m)
- ___________ - II 0.1,2... .(5.42)

Note that althouigh thle tranisformiationi (3.37) suggests growth as R -* C. this is more t han

offset 1 ) thle de~cay of thle p)arab)olic cyl~indoer fiiiict ions". albl~et oil a larger cleigthlisale I?

It )I In ). -Note too that the tranisformation (3.37) is consistent with that usedl previoulsly.

iiaiiilv~% (3.28).

Fi i!m ir 9 shows comlparisoni 1 twetil thle al ove wsyii 1 tot ic results~ (.solid line) and thle

XaN~ct (1 iii ixirical resuflts (1 rokcii line). for~ the most m1istablcl g-,rowtl Ii aites whienit i= -o.

- 10. -15 ( Al =JI~12. i.e. -l 1 Iin all cases). Again t he agfreemient is seein to improve aIs

-i it iijCFVeas1's. Figuire 10 shows a compilarisonl 1betweeni thle corresp)onin~ig r -'s, for' the a v

a;1(ý Mid hintdica tes good agre(inieit et weeil our asympiltotic and numelirical resullts.
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It t irrs out, hiowever. t hat thins order of -11 marks at wvaterslied. Whleni .1l 1., i( t

large. 1bothi roots of cl muist be complex ( and froml ourl pr vviomis d1"ciscssh rs. t lle flo I.,-s

imist al le ). As fll increases. Iluwevcr., evenitinalir t erins, iniside thle square roo)t trmii iii 35.39)

Will(vetnai becomei p)osit ive. andlhec thle two roots, of c1 will cease to beciii c

comi'lmga te p)airs. 1)111 will b)oth biecomie real. III 1)art icitlar. this will occur whNxl(I

_M1 11-2(I~r ~~ .3

oa r-O + '

To illmist rate the st ab ilisa t lonl of t liese- mlodes. inl figure~s 11 a. 1). c, we show lie varmar ion

of thle growthl rates with .11 for the cases ii = -5 anid oI = 2.3. 11 = -10 m() at = - .

o=-13 arnd ai 7.5 respect ixvei. XVe clearly see these iriodes 1 ecorninig, miiut rally st al d

ait flujite values of -Al. For comparison. inI figures 12a 12c ( corresp)oiidhig' to figures l1la

lIeI respectively) we show the corresp)ondinig results fromn sohiitl(ions- of the full ysstclil (3.11 ~

(3.12). At tihe lower values of -11, there is goodl correlation betweenl the two sets of re~sults.

However, as the Mach number increases, and as, tHie order of the tinodes (i.e. m ) incre~asesI.

lie correlation d~eteriorates. XAe ('oisi(ler this latter point fis yea ininig thle 1 elaviolir

of the higher order miodes.

5.5 The structure when m =0( Inii 2 (M=O( Iril12

Onec detail that has inot b~eeni considered so far, is t i;Ihvoroftlei((e s m iirass

This feature was conisidleredl by Duck (1986). arid we conisidler this asp~ect here, for thec

irmiport ant c-ase, wheni1 =l (i)( 1n I2 ). c develops iII thne samne mariner as, in tihe hpr('viouis

s-ill) section. arid close to the critical layer ~'takes thne formn

c() renmainis uinchianigedl fromi that given p~revioumsly. how\ever c( will differ. III thIis case., We

conlsider thle lenngtliscale

R it (r -?) 2 = ()(1). (3.43)
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;111(l "o oil this scale

sign( o• ) f,

sign(u) '"I )I?2 5.47)

2 - C2 + 3!(0.4 r

Sublstitution of thlesm expansions into o1r ()"overning equation 11 iveS, to lehaing ,rl',hI an

eit!eifnemt ion equation of the form

Piii + q,(R)Pjý + Iii lq2 (R)P 0. (5.4S)

Usjii the standard transforniatioii

P( R) = P*(R).p- q,([~R. (5.49)

we ob)taIiI

P.-j + [InIq2 -q q2-- P* 0. (5.50)
lift 4

Howvever. since InI is large, (5.50) may be approximated In

Pý-- + jiijq2P* 0, (5.51)

where

ý4r( ,12-+ I + 1(u)21.2j 2 ~~ + (1,"0 2 3

H~ h3

2 2 o I'('

r,- . ,: - I +• 4' o

O ,, ,,, (3.32)

Thus (5.50) may be written as

S+ 122o, (5.53)(+ •2 +1•2



With

2[4,1) 11- -( 1 + (1 21 )( -112 ?.2 )()]sign( 1,

-2[(1 (-,.) ± M'+ (,2/4].2 +sign(,,)
2 =(5.55)

10)

4112 1I2 ,.16)

'o' 7( (I. )

S=2('s /(J R (5.587)

Equation (5.53) is now in a forim suitable for a WXKB.1 typ)' of alpproxiiiiatioin. This e(imatioi0

has four turning points, however for the range of • required that we liced consider only

the turning points at

171 + 1 [,j2 4/1 2

-2- (35.59)

For large b the WKBJ solution is given by

P H4Cexp J(ihpdý) + A 2 cxJ -(1h1qd`) (5.60)

where

q 2 . (5.61)(1 + { •2 (1+ ý2)

The treatment near the turning points is standard (see for example Duck 1986) and leads

to the following dispersion relationship for c1

7r
I --- (1 + 2m), II = 0.1.2.... (5.62)

4
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121: { FC2 )2 (1+F.,k)l'E

I =- 1 . (5.64)

-- ,i j ±)I/4 (.5.63)
2

" - +I-I I + _ -,, 1 -2 (5.64)

(5.65)

(2v 21

Her. (~.).E(~k) FI ~(~2. l (ei()t oll~lt liIti ju eals of thle first. sccouldl

atill thIirdl klids respeet ivelv.

The systeixi (3.62) was solvedl usinig Newtoni it era tion. and result s for varia tions1 of

E~mvl( th rate NWitl .11A Were~ ('0111)l~tcl for in - 0. 1. 2. 3. 4, 5 for th cw ases ii -5, (1 = 2.3

(figure 130. 1 - 10.o = 5 (figure 131)) 1 -1. = 7.5 (figure 13c). The modified

theory of this slilbsect 1011 does jdjtesomei imuportanit I III '~roveliciiet III the compIIarisoni

wvithI fhuir 'cs 12: 111 part ieiflar t~l blie inelilig 111)" ( f the xIllde, Wvithi ani Increase III order Is,

caiIpt 1 ired. Flwvr l iu~ o i -15 there is quite good eorelacht loll for the lower order

if1(110 ls. a)5- III in1.1crasess thle various wiggles oh Iserveri iii figirtes 12 are niot dI('crih WI . and~

11101''iportailitly 0111 asympiItotic res.'ults do( tiot c'aptuire the iIista~Iilty shiowni III figmres 12

2-1



)UV()11( ab1 out M = S. Indeed,1 figure 12 ind~ivates inst ab ility as S-1 illCrea;1"Ss. WCthllir(fOrc

C()lCIl(I(' that tile niature of theosc mlodes. as SAl --* XIS s10llCwhlat dlifferent . It turns olit

froin thle aiialvs'is of thle following sect ion that as DC * . a1 fiirt her class of lmode emm I(TOVS.

(1Uite d'(ist inct froml those comisidered So far.
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6. Centre Modes, M=O(In)

Hcrc WC eXamin- mo(Ies exhlnite(l "lvi the Maclh ilunilr is of order 1. i.(e.

1I = [,,M. 1- = 0(1). (6.1)

As note(d previously. as -1I -- 0, the features of the iilo(les exhibited at lower N'I;cli

1i11il )ers cease to exist. Il fact thei analysis of sill) section 53.3 suggests that thl(' modes

in this regini( mli(er p)rese'nt c-onsi(deration are neutral. However. our nu 'ierics 1ellie this

and po()int towards the existence of cx7ctrf? 7.odc.s, b y which we mneami, the eigenvaluies are

leteriiiiied primarily b) (-yon(litions ('lose to the axis of the vortex, r = 0. in a manner

sinilar to that of Stewartson an(l Brown (1984. 1985). Here, the complex wavespeedl

dlevelops ;i

C'I

"c c) + - + (6.2)

(an (,x1)alision that cani 1be verifie(l a po.,4tcriori) and therefore

-, 0y,) ± •-- + ...

'1 f. 211 1 19

In order to be coinsiste('nt we 1 must have that :0(0r - 0) =0 i.e.

co = I + q (6.4)

\V" mi1ust now go oni to find cu in our complex wavespeed expansion. The sohlutioins arc.

in th le ili,. trapp)ed in thle region arounid r = 0. but wve )egin y g hv,"ow the(s(e

sohl t i()is late ('1,oitect(ld to the oumt er flow. The flow is divi(hde into thli four re"gions. which

ar, ('01isilered' iIn tui'ri.

We( first 1)egii 0o1r analysis ait thle outer region of thle flow. where r 0(). 1and thle

g)verning e(,l atioul has thle form

1-2Pr 2 -11 11_l- 63
PP, 4- 0' A6.5)0
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Using a transformation of the form

(pr 2 j- 2 j-12

P:= P*(r)cxp - r (6.6)

and writing

0o 4I2Y- ± 472 (6.7)

reduces (6.5) to

Pl*, - 0, '\ P* -- . (6.S)

We define the critical point r0by \Xa( )) 0 and when r > r0, Xo < 0 alid the approximllate

solution to (6.8) is given by

P* _ E, 12pit, -1.9
-{- / 2 (6.9)

where E, is an unknown constant.

We have also assumed that [-O]2 *is slightly imaginary, with its imaginary part

positive. This condition is to ensure that the solution is boImunded as r - Dc. otherwisP, if

1m{[-\Xo]-2L} < 0 we rplace '1' by '-i' in (6.9). Looking at this point from a more physical

perspective, wC require waves to propagate out from tihe critical layer and not iII towar(l

it.

In order to be able to match (6.9) with the solution in the r < 7-t region. we must first

examine the solution of the flow in the transition layer, around r . The hengthscalh in

this region turns out to be

r.-rno = R iI- 5. R =o(1). (6.1)

and use of this scaling reduces our governing cquation to thme Airy ,qurmtion, which has

solutioms of the form

P* = F'Ai( \,(i())) `/R) + F2 Bi(No)(f,,))-/R). (6.11)
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St aiiI anIar nalysis and iiiatching with ( 6.9) yichl(s the result

F1 = iF,. (6.12)

In the regioll ' < K' l) > 0 and lhellce the XIKBJ solution here is given by

p._ {1_ D( eXl){I, i' 2 "-•" .I•-TK] (d,}

+D2eX{ ?~_____ ~2~j;~}} (6.13)
4r 0

As we approach tte transition layer this solutioni must match with (6.11) implying

D, = -iD V/3. (6.14)

Note t hat ais r - 02 ( 2 _1 2 , 2.q -/ 12111
"qA-- 2 DIZ 1 (xp + D 2Z 2 (XP (6.15)q-11lr 4 4"

zl \l){Jr 7d12. (6.16)z, = ,.Xj 1,,I 12 • dr

1
Z =Z (6.17)

WO 11ow consider the lehigthscale, r = 0( Jil- 2 ). )Ny set tilig

r = 0(1). (6.13)

The go veri•'Ig equation in this region. to leading order, is givcn by

P,.. iijq2.1 7-P, + 1,12 p23  =+1P 0. (6.19)
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where

1 2
(6.20)

and as previously, it is necessary to use a transformnation, which is of the stailar(l t ypec.

i.(e.

P P** xp{ I q2r1Mdr}. (6.21)

which leads to the final form of the governing equation in this region. viz

pr** + [ 02q[•2 A, 1 q4r2I• 4 ] = 0. (6.22)

This equations yields solutions of the form

4 1 (C 1 '( ) + C 2 K1 ,( 1 4  )) (6.23)

where I and K are modified Bessel functions. written in stanldard form, with

Now, as I- o

= 
.2_ ,-xp

Crr2r;XI)( M7`2r4

P e/l) q2 q -1 2 •,. 1' 24
+C 2 r12 2qA22 7,,I 2 /4 4 - ). (6.25)

an(d comparing this with equation (6.15), we see that in or(der for these solutions to mat ch

and taking into account equation (6.14). then

C= -i7rv/3Z'C. (CG.262)
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Also, we take not)e of the fact that as r -* 0, then

C, ( I .1 12 , C., 1p** ,;2 + F • (6.27)
2 '-2

where .11 = q'A- i"t1/4 and F(i r) is tlie gaiinna fniction. d(efilnd in the standard fashion.

Next we set

R 0 l, - (l). (6,28)

and in this regime i develol)s as

n- cl + ,5 ,,(()R + ...+ (6.29)

with the governing equation

PI?2 +j12[ 4q 2 ±4j +q 3 - ( 63
T oc, + 1 "(0)R2]2 + ± ,,01)R] R P =0. (6.30)

2-, ' + 2+,( ) ;- [ -),,O, + 2] ,,

-which has the solitioni

P ) 2 )+ F(=,;=2: IlI + 1 TR2 ). (6.31)(1-TR2 )1

where, F is the hylperge)netric function in standard notation, and

I I/ )T - 2-,,o (6.32a)

,1 (6.321b)

S111,I ± ) - (i, 6.32c)

.• = (I, 12 + 1)). (6.32d)

I(I + ±1) : _- (6.32c)
4
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4q.~ t1 -16 
331

Ntc that t his ctjllat io I" very ittijar III fortii h to tho found( 1w Stewai >11tmk ( Cap e *

(1 985 ). Tin 5 d i 10 i of c' iire iite ait Rt = (0 1v the dehuiit ionl of the lIpIvj )rg( )llwt r>

fiiii.t i()l ;11. (ii thlerefort' satisfies01 c 1l1 avC )11( cllit ons ;t tflie (t( of theV()r( A,

1? hccm('011(' large

P R, (AR- + A21?h (6.34)

mnat chiii thil- withi ( 6.27) and1( iiiakixig use of (6.26) -we see that.

r(.,/2 + 1 )Ft. <2)Jii IiA23 (6:35)

,whiich ui(s ~a relat i(ms.hnp 1)ttweeii .41 and( A,2 X~e 110w go) oil to iiete'i-liiile '~(.1 lci y

WCe Iegin. by writinhg P. as ft --- ,c. III termsi. of It's asymlpt oti ceXpalsim U III till*-

(1 - ,(,(-T 2 2" + (-Tft )P ~ ] (6.36)

where.

(LI~ ~~ - )! (v
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aE2~ t power ' seris(XLall~lills ill 11/TR J?. with t heir leadiiig or er erins

ilij tY. Ia tchltig thle two large R? ýsolitiimis. (6.34 ) and1 (6.36 ) yields th lie rla t imiislii).

- -ik Ty' (6.3S)
.4 , ý'Ii

l~ovev1. licee.» 0 thien T'j > 0. which in turn ililplices that '111(l an therecforc

tol( adhliu (11(1(1. .,) 0. .Hence . we see that. , ( n1 -+-.)- /I munst Im e it her a necoat lye,

/'l " +*~ + N. XA >0)o (6.39)

for integer N. whereC I/( denteWs aI first order approxuimationi to p

Sinlce ." is ilinaginlary. thle al ove exipressimi sill st it itedl int0 ( 6.32c ) and ( 6.32a ) gives

lie leadi hin or(I( l- inliaginlary colltrjlbltimil to cl . i~.isob t ainled from

C1,(0 (6.40)
Svl'lf,(iu + 1)

It a151) l)055i11e to obta in thle C-oirrect (iou to this teruin 1by ret ainuing thle niext order appr)Jrx-

Mil theal (6.38) giVes

.41 + In! + N)!(. + N!(.

.4 ~ )N!(u ±- N)!

Sill",
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ainiI there'fore. if we( allowv /-1 /1" +.\/ ill the ahov\'t, we ste hat

, 
-.

0/ 1

Thliecfrt' all vaiay i' I no hris cx artsitiliit1t'iiren) srithi'dH)titl*etrttnII

3.when"al vaigure illt thes expilvart'tl with figure prevt'iouslyt' frouiited fullver >'t''i ct)I.I'-ipaisn

lt tt'erli t ie found ilto b itf severl orders of uliela!'a 1rei tld nislcl thnte urflt'ollrttno

sInilis of -aat igures1awcso 141) vaiaion f thle growNth rit w~ith e 4 aia th itli rt lict 5. At -i itlt

awlx'ysjs of this subsectioln, for the Iat' = -10. Ml =i10 andt is to)h cl~t tlip~ait't with the~

fulfly iinumerical results shiown ili figure 135. Againi. the' resuilts I' ' ;it' collrtagu1!tý' ill a Itit'!ici r1

thet uiiaguiitildle anid locationi of the uiaxiuinuuII growthi rate is tjulitt aeccirately l)1di'dtctl.

Unifort uniately, outi' at t'iii~t s at a iuIIIIeI(rical solut ion If ( 3.1 i). ( 3. 12 with ;Ii lart'astiiah1lt

imnd duero grid poinits for thli case n - 15. M - 13 proed inisi ict'sfi i. di it to a largt'

wasý uincrease'd. 0111' ininiii'r'al scheme, Aftei failedl alnrl ptly'. withI a siit ' Itlei 'Iiitrat it in f

la rge' nuniiers of spuirios 15iiotit's.

Ro'fe'riug again to) fgure 14. we sow that tiut uppt'r ntiutral point is, clearly '-t''i. This

octcuirs at o =- -111. the ptoinit at whjich i - 0) ( ,cc 6 .3:3 ). Thit fully' niniumm'ical res.-ults

thrliighloit this piaper' all very clealy Ahow this rt'ult . which appt'ars to app~ly liilivtr'rall\'.

as ill thit iiicoipil-ct'siilt' cast'.



Ad( lit jotalir hfiiI('rs 14 show a dist inct lower neu t ral I jint. This Uci-1csi)ond( to thle

vallic of (i where ".7(,),0) =2 0 iiaiiily oi -q/,2. At this locatioii. u and 1) (delfinecd by

S6,33 1)tl e 1 xhibi it a siiigiilari tv Tlicrc is sonic correation withI theise re'siuts a ii iI In sc

)f* tie fuilly uiiiuiit'iical s-wcincic. Ind~leed. it is lilost remiarkable that the location o)f this,

1)W'1I licitial I m int is i hult cla1 with tihat foundm inl t he incicI1lpre55..iillae ( St ewart s( In -

flboiol~Ai 1987). aiI(I that 11011 the iippcr and" lower iicitral 1 )Ojlts anc "apmird by ( 6.4)

It is' a Isi w( Ith Iii1 Iwing, that t here is sonlic simiilarity b et ween thei strucilt1 re ( If t Iý'

'iaa 11' .a1d n s founitd ill th l iconiIpr( ssi lic wo(rk o)f Stewartsoii k Browni (1 9S5). ad-

th~loaj tile particular details' are dliffcrcnt. ai"ii in (our caeaiavi/asvii;toIcslutionl on

cI. a' (= I ) 1 'ca c isý in ss'ibl h(c 6.6 ). whilst Stewartrson &- Browni (1 985) hadl to rcs,( rt

M( w minitiuirial appro(achl for This scale.

IitIll th followxiIni 'useilctjon we go) om to dr1aw a iuluI1iIecr o)f conclusions, froi m lor tu-

:34



7. Conclusions
We have mniOiiited a v'yt entiatic- study of tfle inviscidt stalbility of the trailing line

vortex. starting at Zero Maclh numnl)er -11I and progressively ilrereasing -l. W\e see a gtn'iiral

reduiction in growth rates as 11 inlirea'ss. anl1 indhleedl tle results of subl)section.1 5.4 and

5.3 re lim't thhat the, original family (of mods aill stal ilise when 1 = ()( IiiI½ ). specifically

"when (5.43) is satisfied. However it is shown in section 6 that when 11 -= ()( Iii ). a ceintre'

iiodtle elass of instalbilitv is formed. We feel that althlogh our nmeniri('al results (fihgurs•

12 in 1artiuilar) ihiiheatev that these " mt)(ls springý from the higlir ortler hit itles at livwo'c

NMaclih 1nuiiil ers. as -it inicreass these eiit mrtnt indes mode's mly well 1bwecomie di.stilict frl•m

thle riginial class (of mnhos that exist at lower NIMach nminners.

A furthher imiiportant fcatur ie of note. and on(, that is ()1 stT'v(et in inc(im)lir(ssildhl wo)rk

(L(,il ovichi •k Stewartsoin 19S3. Stewartsti &, Brown 19S5) is that there is a good (1 d'al of

tmmiiriical evithence to suggest that there exist nl) instalbilitics for (o > -ii q. Inh•et'o,. this,

is a•os) confirmne(d lv (6.4).t noting that a is given lIq (6.33). This aslpet is murrentlv ueiihr

filrthher investigation.
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Figure la Variation of growth rate with a, n -- 1, M 3.
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Figure lb Variation of growth rate with a, n = -2, M= 3.
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Figure le Variation of growth rate with a, n = -3, M = 3.
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Figure 2a Variation of growth rate with a, n = -1, M = 5.
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Figure 2b Variation of growth rate with a, n =-2, M =5.
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Figure 2c Variation of growth rate with a, n =-3, M =5.
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Figure 2d Variation of growth rate with a, n =-4, M =5.
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Figure 2e Variation of growth rate with a, n =- 5, M 5.
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Figure 3 Variation of growth rate with a, computed most dangerous modes, M 3.

n -1 through n =-10.
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Figure 4 Variation of growth rate with a, asymptotic most dangerous modes using section

5.1 results, M = 3, n = -1 through n = -10.
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Figure 5 Variation of growth rate with a, for n = -5,-10,-15 M = nj¼.
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Figure 6 Variation of cr with a, for n = -5, -10, -15 M = InI*.
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Figure 7 Variation of growth rate with a, for n = -5, -10, -15 M In .
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Figure 8 Variation of c, with a, for n = -5, -10, -15 M = Inl.
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Figure Ila Variation of growth rate with M using section 5.4 results, n = -5, a = 2.5,

first 6 modes.

0 35

0.30

0.25

0 20

010

005

0 00

0 1 2 3 4 6
M

Figure 1lb Variation of growth rate with M using section 5.4 results, n = -10, a 5.
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Figure 11c Variation of growth rate with M using section 5.4 results, n -- 15, a 7.5,
first 6 modes.
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Figure 12a Variation of growth rate with M fully numerical results, ni -5, a =2.5,

first 6 modes.
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Figure 12b Variation of growth rate with M fully numerical results, n = -10, = 5, first

6 modes.
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Figure 12c Variation of growth rate with M fully numerical results, n = -15, a = 7.5,

first 6 modes.
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Figure 13a Variation of growth rate with M using section 5.5 results, n = -5, a 2.5,

first 6 modes.
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Figure 13b Variation of growth rate with M using section 5.5 results, n = -10, a = 5,

first 6 modes.
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Figure 13c Variation of growth rate with M using section 5.5 results, n = -15, a 7.5,

first 6 modes.
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Figure 14a Variation of growth rate with a for centre modes, n = -5, M = 5.
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Figure 15 Variation of growth rate with a n -10, M =10, fully numerical results.
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